
Towards bio-inspired fruit detection for agriculture
Zeke Hobbs

Sheffield Robotics
The University of Sheffield

Sheffield, UK
z.hobbs@sheffield.ac.uk

Tom Duckett
LCAS

The University of Lincoln
Lincoln, UK

tduckett@lincoln.ac.uk

Simon Pearson
LIAT

The University of Lincoln
Lincoln, UK

spearson@lincoln.ac.uk

Michael Mangan
Sheffield Robotics

The University of Sheffield
Sheffield, UK

m.mangan@sheffield.ac.uk

Abstract—Automation presents a potential solution to agricul-
tural challenges such as worker shortages, invasive pest species
and decreasing profit margins. Many technical challenges remain
including visual detection of soft fruits. State-of-the-art fruit
detectors increasingly rely on deep learning models and standard
imaging devices which achieve excellent performance but require
significant effort to train and deploy, limiting their uptake.
The fruit-fly species Drosophila suzukii successfully pinpoints a
host of soft fruits visually presenting an excellent model system
which can inspire a new class of fruit detector using sparse
computational and training resource. Here we present an outline
of the features of fruit fly vision that appear to underlie their
fruit finding abilities and present a specification for a novel robot
imaging system to verify hypotheses in real agricultural settings.

Index Terms—Agriculture, Fruit Detection, Computer Vision,
Bioinspired, Fruit Fly, Multi-Spectral Imaging, Novel Sensing

I. INTRODUCTION

For essential agricultural tasks such as yield prediction,
assessment of fruit health and ripeness and for harvesting to be
automated, visual fruit detection systems must be: sufficiently
robust to function in industrial settings with known challenges
of lighting variance and occlusions; computationally efficient
to be deployed on small, cheap robot platforms; perform in
real-time, and ideally function for a variety of fruits (and their
varieties).

A. Engineered approach

Deep neural networks (DNN) represent the state-of-the-art
methodology in fruit detection, with models such as MangoY-
OLO [1], DeepFruits [2], and most recently L*a*b*Fruits [3]
all achieving excellent detection scores when tested on realistic
datasets while striving to reduce computational cost (see [1],
[3] for discussion). Performance improvements can be traced
to innovations in both imaging technologies (RGB [1], [3],
3D depth [4] and RGB + infrared [2] cameras) and network
architectures moving from multi stage detectors with course
feature maps [5] to single-stage detectors [6] and multi-scale
feature maps [7], [8]. Most relevant to this work, L*a*b*Fruits
[3], demonstrated the utility of looking to nature for inspiration
by using a colour opponent process inspired by human visual
perception to increase performance.
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Yet a concern for DNN models is the need for (re)training
for each fruit type or variety not found in the original training
dataset. This process often requires manual collection and
annotation of images, and expert involvement in retraining
models, presenting a potential barrier for fruit growers (see
Fig. 1 Upper Panel for a typical DNN training pipeline).

B. Nature’s approach
Our research has identified the fruit fly Drosophila suzukii

(DS) as an ideal model for inspiring a new class of low
computation, zero-retraining fruit detector. DS are an invasive
pest species to Europe that can visually locate a variety of soft
fruit types of a variety of colours (e.g. strawberries, raspber-
ries, blueberries) despite possessing low-resolution eyes and a
highly constrained nervous system [9].

Although DS uses a combination of olfactory and vision
cues to find fruit, trapping studies demonstrate that bright
colours alone actively attracting fruit flies [10]. Underpinning
their colour detection abilities are eyes that detect light in
spectra outside the range detected by imaging systems used
by deep learning algorithms to date. Specifically, DS have
two photo-receptors sensitive to ultraviolet (UV) light (at
335nm and 355nm), as well as green (530nm) and blue
(460nm) light. UV light has already been demonstrated as a
powerful cue for segmenting foreground objects from the solar
background [11]. Moreover, a recent study has suggested that a
similar colour opponent mechanism in this non-visible spectra
provides fruit flies with their impressive fruit finding abilities
[12]. The short life-span of DS would favour a hard-wired
visual processing pipeline allowing fruits of various kind to
be identified without a costly learning phase with associated
benefits for artificial systems (see Fig. 1 Lower Panel for the
proposed bioinspired pipeline).

II. DROSOPHILA EYE CAMERA SPECIFICATIONS

To verify whether non-visible light offers benefits for
generic fruit detection we propose to construct a novel imaging
system inspired by DS (See Table I for technical specification
and comparison with state-of-the-art), and to collect data in
real horticultural settings allowing bench-marking against state
of the art models.

III. OUTLOOK

DS offer an excellent inspiration to developing highly re-
liant, but computationally cheap fruit detection systems. The
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Fig. 1. Deep learning life cycle: Training and retraining - Steps of deep learning, 1) Gather images, 2) Annotate images, 3) Train neural network (Network
architecture from [1], 4) High accuracy fruit detector. For additional fruits to be detected not found in the original dataset, repeat steps one, two and three.
Bioinspired learning life cycle - 1) Evolutionary optimised input sensitives to UV (335nm and 355nm), green (530nm) and blue (460nm). 2) The network is
trained through evolution to find fruits using a small brain requiring no training. 3) General fruit detector able to detect all fruits.

TABLE I
COMPARISON BETWEEN NATURE AND ENGINEERED APPROACHES.

Points of Detectors
comparison DS [1] [3] [2]

Input pixel count 700 4.1MP 0.9MP 2MP
Input type UVGB RGB RGB RGB + IR

FPS 100 [13] 14 26 5
Retraining for new fruit No Yes Yes Yes

custom camera detailed above and currently under develop-
ment will play a crucial role in understanding how the humble
fruit fly achieves such impressive feats which we will directly
apply to solve real agricultural problems. Field data collection
scheduled for Spring/Summer 2020.
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